
ATLAS COMPILER COMPILER LISTING (1963)

This document explains the contents of a red spring-back binder, which contains a
listing of the bootstrap loader of the Compiler Compiler printed on 22 December 1963.
It was printed the day before Iain MacCallum left Ferranti/ICT for the Central Electricity
Generating Board (CEGB). He had been working on the Compiler Compiler for his M.Sc.
and on an Algol 60 compiler with John Clegg, under the direction of Dr Robin Kerr, for
Ferranti/ICT. No Algol 60 definitions appear to have survived, perhaps because the
first attempt at the compiler was much larger than had been hoped for, a consequence
of the single-rooted structure of its syntax. It caused an unacceptable amount of drum
swapping. The red binder was retained by Iain while he was at the CEGB and
subsequently throughout his time at the Department of Computer Science, University
of Essex. On retiring from the University in 2001, he passed the binder to Simon
Lavington who took care of it. In October 2013, Simon asked Iain if he recognised its
contents! It was the date on the listing of various test runs at the end that confirmed
the authenticity of the document: it was printed on Iain’s last two days with
Ferranti/ICT!

By an astonishing coincidence, a second copy of the listing was preserved in the
Department (now School) of Computer Science at Manchester University. It was
probably gathered by Derrick Morris, and then passed to the late Dr Brian Napper, who
took it upon himself to assemble a large box of material relating to the Compiler
Compiler where it remained in the School’s archive after Dr Napper’s death. In mid
2013 it was borrowed by Dik Leatherdale by kind permission of Prof. Jim Miles, the
current head of the School. The contents of the box included a card bearing the
warning “THIS BOX INCLUDES PRICELESS ARCHIVE MATERIAL. DO NOT TOUCH
WITHOUT Dr. R.B.E.NAPPER’S PERMISSION”. It is thought that this second copy is a
carbon copy of Iain MacCallum’s as it is identical down to the page breaks which, in a
few cases, run through the text of some lines. The box also contained the surviving
copy of Jeff Rohl’s flowcharts and notes on the Compiler Compiler as well as various
listings which appear to relate to an attempt to transfer the Compiler Compiler to the
Cambridge Atlas II (a.k.a. Titan). It is known that CC was used to create and support
the Systems Assembly Language (SAL) at Cambridge – [see ref. 1].

The document in the red binder (and the carbon copy) presented a challenge to Iain
MacCallum, one of the original CC implementors, and Dik Leatherdale, author of an
Atlas 1 Emulator – [see ref. 3]: could they be scanned and used to reconstruct the
Compiler Compiler on an emulator, running on a PC? By December 2013, Iain and Dik
had managed to scan and load the entire bootstrap into the emulator, thus verifying
the accuracy of all but a few routines at the end of the scan. There followed an
extensive investigation by Dik and Bill Purvis (author of another Atlas 1 emulator) of
the meaning of DEFINE COMPILER, and its relationship with the infant operating
system of 1963. Certain changes were made to adapt the program to the later, mature
operating system definition supported by the emulators. This was essential if the

2

reconstructed CC was ever to compile a compiler! In May 2014 they managed to define
a trivial program written in the CC language and execute it correctly on the two
different emulators.

The Original Compiler Compiler code, with line numbers and contemporary comments,
is referred to in this document as ‘cc source_1.pdf’ – available as [ref. 5].

Structure of the listings

The listings in the red binder have been split into four sections, by content. The original
input was, of course paper tape which has not survived. However, the CC Index (see
file Appendix 4) refers to paper tapes B, C, D, E, F, G and H. It should, therefore be
possible to identify these tapes on the listings. Sections 1 to 3 are the Compiler
Compiler itself, and section 4 is the output from six test runs. (See file SixRuns.pdf –
available as [ref. 6].)

Section 1

Section 1 (CC source_1.pdf lines 1 to 2143) consists of 30 foolscap pages of Atlas Octal
Input, containing up to 75 lines per page, numbered by hand from 1 to 30. These
pages were produced by a cross assembler for Atlas running on the Mercury. The
original input to this cross assembler has not been found. These pages in the binder
were printed from 5-hole paper tape on a Creed Teleprinter. It took a sensitive OCR
scanner (Omnipage 18) and many hours of human intervention to retrieve the code
from this listing. This section is read by the Octal Input routine in the Atlas Fixed Store.

From a brief glance at Section 2, (pages 2-1 to 2-107 - lines 2154 to 7954) which is
effectively the data for the program formed in Section 1, it is easy to mistake Section 1
for a conventional assembler of Atlas Intermediate Code. However, with reference to
the list of contents of this section in Appendix 1, it can be seen that it is better
described as a basic Compiler Compiler Kernel. It starts with the index and the main
chain store both of which are used throughout all phases of the Compiler Compiler. It
has simplified versions of fundamental routines such as the recursive routine entry
code (DOWN) and exit code (END), the top-level MASTER routine, the syntactic
ANALYSIS ROUTINE and the LINE RECONSTRUCTION Routine. As the ITEM routine
assembles items in Section 2, it maintains the ITEM index.

Section 2

Consists of 107 foolscap pages of Atlas (CC) Intermediate Code (pages 2-1 to 2-107 -
lines 2154 to 7954) printed on a Flexowriter, from 7-hole paper tape. These are Phrase
Definitions, Format Dictionaries and more Routines. This section scanned reasonably
well, the foolscap page size being the main drawback. Many pages had to be scanned
twice and ‘stitched’ together.

A list of the items of Section 2 is provided in Appendix 2. The objective of Section 2 is
to develop a minimal compiler that will read the Phases, Formats and Routines of

3

Section 3 in the full Compiler Compiler Language. It introduces a DELETE ITEM routine
(ITEM 145), a REPLACE ITEM routine (ITEM 164) which is used to replace basic
versions of, amongst others, the ANALYSIS Routine (ITEM 215), the LINE
RECONSTRUCTION Routine (ITEM 238) and the MASTER Routine (ITEM 214). This
version of the ANALYSIS Routine has to parse the relatively high level language
statements seen in the listings of Section 3. The replacement LINE RECONSTRUCTION
Routine admits multiple overstrikes to represent characters such as ≠ and ≥.

The three major routines of the Compiler Compiler that process the high level elements
of the definition of a compiler are in this section: the PHRASE routine (ITEM 218), the
FORMAT routine (ITEM 220) and the ROUTINE routine (ITEM 221). The hard work of
processing the individual statements of a routine is done in ITEM 253, simply called
‘compile body of a routine’.

Towards the end of this section are a number of hand-coded built-in routines for
frequently used statements in the routines that define the semantics of the target
language. As an example, four of these used for basic arithmetic on numbers and
addresses are:

ITEM 187 [AB] = [WORD] [SEP]
ITEM 188 [AB] = [WORD][OPERATOR][WORD] [SEP]
ITEM 189 ([ADDR]) = [WORD] [SEP]
ITEM 190 ([ADDR]) = [WORD][OPERATOR][WORD] [SEP]

These are re-entered in the CC language in Section 3 with the same item numbers:

FORMAT [BS] =[AB] = [WORD][SEP], 187
FORMAT [BS] =[AB] = [WORD][OPERATOR][WORD][SEP], 188
FORMAT [BS] =([ADDR]) = [WORD][SEP], 189
FORMAT [BS] =([ADDR]) = [WORD][OPERATOR][WORD][SEP], 190

and

ROUTINE (COMPILER)[BS] ≡ [AB/1] = [WORD][SEP]
...
ROUTINE (COMPILER)[BS] ≡ [AB] = [WORD/1][OPERATOR][WORD/2][SEP]
...
ROUTINE (COMPILER)[BS] ≡ ([ADDR]) = [WORD][SEP]
...
ROUTINE (COMPILER)[BS] ≡ ([ADDR]) = [WORD/1][OPERATOR][WORD/2][SEP]
...

For an explanation of the qualifier (COMPILER) see Section 3 below.

The handling of LISTS, NESTS (stacks) and other relatively addressed data structures
is by Auxiliary Statements [AS] such as ADD WORD TO LIST and ADD WORD TO NEST.

4

These are hand-coded in this section, and like the built-in statements, are replaced in
Section 3 by equivalent procedures written in the language of the Compiler Compiler.

Section 3

Pages 3-01 to 3-75 (lines 7958 to 10961) consists of 75 foolscap pages of PHRASE
definitions, Built-in statements [BS], Auxiliary Statements [AS] and Routines, all in
the language of the Compiler Compiler. See Appendix 3 for a list of all items in this
Section.

This Section of the listing begins with a BNF-like definition of the syntax of the basic
PHRASEs of the Compiler Compiler language. It is followed by the FORMATs of the Built-
in Statements [BS], seven new Master Phrases [MP], and the Auxiliary Statements
[AS], and finally the COMPILER versions of the Built-in Statements.

 These pages were well printed and at first appeared to scan well. Like pages in the
previous section, some needed to be ‘stitched’. However, there were other problems in
making digital sense of this section. The character set included the Greek letters α and

β and the full range of comparator operators ≠, ≡, ≢, ≤, and ≥. The OCR scanner made
numerous mistakes with brackets and other non-alphanumeric characters.

What is the purpose of the so-called COMPILER routines? For example, at line 8050, is
the definition of the Auxiliary Statement for adding a WORD to a LIST or a NEST.

ROUTINE [AS] ≡ ADD [WORD] TO [LIST OR NEST][AB][SEP]
 β69 = [AB]
 β68 = [WORD]
 α1 = CATEGORY OF [LIST OR NEST]
 α1 = α 1 + 203
 CALL R α1
 [AB] = β69
 END

Then at line 8830 is the COMPILER version.

ROUTINE (COMPILER)[AS] ≡ ADD [WORD] TO [LIST OR NEST][AB][SEP]
 CALL [BS] COMPILER B69 = [AB]
 CALL [BS] COMPILER B68 = [WORD]
 A1 = CATEGORY OF [LIST OR NEST]
 A1 = A1 + 203
 PLANT 1102, 70, 76, A1 IN B88
 CALL [BS] COMPILER [AB] = B69
 END

5

When the routine at line 8050 is input, the 6 statements are analysed line by line, and
assembled as analysis records for subsequent interpretation when it is called.
Interpretation is slow. When the COMPILER version is input, the 6 statements are
similarly analysed line by line but in this case native Atlas instructions are planted.
When this version is executed it is fast!!

It is worth examining the COMPILER version at line 8830.

1. The first statement

CALL [BS] COMPILER B69 = [AB]

needs a COMPILER version for the statement

B69 = [AB]

This is the routine starting at line 8061 running to line 8168, namely

ROUTINE (COMPILER) [BS] ≡ [AB/1] = [WORD][SEP]

So the first statement is compiled as native Atlas code.

2. The second statement is compiled into native code in exactly the same way.

3. The third and fourth statements

A1 = CATEGORY OF [LIST OR NEST]
A1 = A1 + 203

trade on the juxtaposition of Items 204 and 205 in the index.

 ITEM 204 Add word to list
 ITEM 205 Add word to nest

and the PHRASE definition

PHRASE [LIST OR NEST] = LIST, NEST

at line 7976. LIST is Category 1 of [LIST OR NEST] and NEST is Category 2.

Thus, they compute in variable A1, the appropriate item number, but plant
nothing

4. The next instruction does the planting of native code.

PLANT 1102, 70, 76, A1 IN B88

5. Finally,

CALL [BS] COMPILER [AB] = B69

6

calls the COMPILER version of [AB/1] = [WORD] used to plant code to update
the address of the LIST OR NEST [AB].

Section 4 - Various outputs from loading Sections 1 to 3.

The final section, on continuous perforated line printer paper, with the sprocket holes
removed, consists of the listing of six runs of the Compiler Compiler. (See file
SixRuns.pdf, [ref. 6]. These are best identified by the date and time of printing.

22.12.63 11.11.23
This is a Catastrophic Fault listing of the non-zero B-lines and the stack. The error was
in R142, the pre editing routine. The circumstances and the reason have not been
ascertained.

22.12.63 11.20.47
This is another Catastrophic Fault listing of the non-zero B-lines and the stack. Again
the error was in R142, the pre editing routine. The circumstances and the reason have
not been ascertained.

We found that the next two execution listings were essential to the loading of the
reconstructed Compiler Compiler on the Atlas I emulators. As each batch of Optically
scanned pages was added to the reconstructed input file, it was possible to check the
output of the emulator with the output of 22 December 1963. Each discrepancy was
investigated until an error in the source was located and corrected.

22.12.63 11.41.42
This is the output from the CC as it loaded Parts 1, 2 and part 3 as far as line 9360
(Tape G)

22.12.63 13.11.05
This is the output from the CC as it loaded Part 3 from line 9364 to the end. (Tape H)

23.12.63 10.45.12
This appears to be the result of DEFINE COMPILER CC followed by a list of the B-lines.

23.12.63 10.45.51
This appears to be the result of DEFINE COMPILER CC2 followed by a list of the B-lines.

Philosophy of the Compiler Compiler bootstrap

The Compiler Compiler is 'complete' in the sense that it may be written in its own
language. In other words, it consists of phrase definitions, format dictionaries, and
routines whose instructions belong to an extended set of the built-in instructions and
auxiliary statements. The general implication of this is that once the material for
interpreting one of these primary statements has been loaded, it is possible to process

7

subsequent statements of that type written in the system language. This type of
bootstrapping procedure has been adopted for the Compiler Compiler for three
reasons.

1. It has been possible to write a considerable part of the system in a language
which is particularly suited to its own requirements and which reduces the
likelihood of errors in the coding.

2. It provides more positive evidence that the various parts of the system function
properly; for example, if a phrase which has been processed by the phrase
assembly routine is subsequently used by other parts of the program and is
found to give the expected results then it is almost certain that the phrase has
been assembled correctly.

3. Once the Compiler Compiler is working on Atlas, it will be possible to produce a
compiler for another computer by providing the Atlas version with a set of
primary assembly routines which will plant machine instructions for the other
computer. By reading the compiler again, written entirely in the language of the
system, a compiler for the other machine will be generated.

The Phrase Definitions, Format Dictionaries and Routines in Section 2 of the listings are
hard to decipher without the help of the index of item numbers/ descriptions. See
Appendix 4.

Addressing Philosophy

The fundamental addressing unit on Atlas was the 48-bit word; used to contain an
instruction or, more significantly, a floating-point number. The top 21 bits of the (24-
bit) address were used to specify a word. But the word could also be divided into two
24-bit halfwords and eight 6-bit characters. To address these smaller quantities, the
remaining 3 bits of the address were used. In normal Atlas parlance, an address might
be specified as a decimal number with an optional octal “fraction”. Thus the least
significant halfword of word 91 would be specified as 91.4, and the least significant
character of the same as 91.7.

 But the Compiler Compiler made little or no use of floating point numbers, dealing
almost exclusively with halfwords. So, by contrast its addressing was specified in
terms of halfwords with a decimal number in the source code mapping onto the top 22
bits of the address and the character addresses being specified as a 2-bit binary
fraction. Thus in CC, the same addresses would be specified as 183 and 183.11.

 Our modern emulator [see ref. 3] displays information in “normal” Atlas addressing
mode and whereas the Compiler Compiler itself finds no difficulty in employing its
unusual addressing convention, it can be confusing for the human reader.

8

Relative Addressing

Once the decision had been taken to allow basic routines to be replaced by routines
with more functionality, or which plant native code, it followed that all store references
had to be relative. The rich instruction format of Atlas made this possible. Local
variables are addressed relative to the start of the routine and jumps are all relative to
the address of the jump instruction. Routine replacement consisted of
adding the replacement routine - possibly using the original to do so with interrupts
inhibited - sliding up memory over the original routine, updating indexes restoring
interrupts and continuing reading routines.

However, certain routines, for example 0 (the compiler entry point), 281 (slide
compiler up a block), 279 (sub-routine entry - DOWN) cannot be allowed to move in
memory and are designated as FIXED ITEMs.

Acknowledgements

During much of his two and a half years at Manchester University Iain sat at a desk in
the drawing office of the Electrical Engineering Department’s Dover Street Building
next to Jeff Rohl. Iain will never forget the diligence with which Jeff documented the
Compiler Compiler in the form of hand-written flowcharts. Jeff is no longer with us but
fortunately these gems found their way into the big box that Brian Napper guarded,
and then to Dik who scanned them. Thus we had photo copies to refer to as we battled
with the less than perfect OCR output. Samples of these flowcharts are available at
[ref. 7]. In the 1960s, computer memory was too precious to have it cluttered with
comments! So we record our grateful thanks posthumously to Jeff and Brian!

Iain is also grateful to Tony Brooker who took him into the Compiler Compiler team in
1961, and to Derrick Morris who, in Tony’s absence in the USA, led the CC
development and supervised his MSc. Alas, Derrick is no longer with us.

We are also indebted to Bill Purvis who provided the OCR scan of the Index that will
help serious readers winkle out more detail from the bootstrap listings.

References.

1. See: Tony Brooker and the Atlas Compiler Compiler:
http://curation.cs.manchester.ac.uk/atlas/docs/Brooker%20Atlas%20CC%20rev%20
April%202016bb.pdf

2. The definitive description of the Compiler Compiler is in this paper:
R.A. Brooker, I.R.MacCallum, D. Morris, J.S. Rohl. 'The Compiler Compiler',
Annual Review in Automatic Programming, Vol.3, 229-71, Pergamon Press, 1963.
Also available at: http://curation.cs.manchester.ac.uk/atlas/docs/ccPaperDL.pdf

3. Dik Leatherdale’s Atlas emulator:
https://www.leatherdale.net/atlas.htm

4. I.R.MacCallum. M.Sc. Thesis, ‘Some aspects of the Implementation of the
Compiler Compiler’. Manchester University Thesis No. 7476. Also available at:
http://curation.cs.manchester.ac.uk/atlas/docs/Some%20aspects%20of%20the%20i
mplementation%20of%20the%20Compiler%20Compiler%20on%20Atlas.pdf

5. File cc source_1.pdf is available at:
http://curation.cs.manchester.ac.uk/atlas/docs/Compiler%20Compiler%20source%20
code.pdf

6. File SixRuns.pdf is available at:
http://curation.cs.manchester.ac.uk/atlas/docs/Six%20CC%20test%20runs.pdf

7. Samples of five of the flowcharts are available at:
http://curation.cs.manchester.ac.uk/atlas/docs/Original%20Compiler%20Compiler%2
0flowcharts.pdf

Iain MacCallum
Dik Leatherdale
September 2014

http://curation.cs.manchester.ac.uk/atlas/docs/Brooker%20Atlas%20CC%20rev%20April%202016bb.pdf
http://curation.cs.manchester.ac.uk/atlas/docs/Brooker%20Atlas%20CC%20rev%20April%202016bb.pdf
http://curation.cs.manchester.ac.uk/atlas/docs/ccPaperDL.pdf
https://www.leatherdale.net/atlas.htm
http://curation.cs.manchester.ac.uk/atlas/docs/Some%20aspects%20of%20the%20implementation%20of%20the%20Compiler%20Compiler%20on%20Atlas.pdf
http://curation.cs.manchester.ac.uk/atlas/docs/Some%20aspects%20of%20the%20implementation%20of%20the%20Compiler%20Compiler%20on%20Atlas.pdf
http://curation.cs.manchester.ac.uk/atlas/docs/Compiler%20Compiler%20source%20code.pdf
http://curation.cs.manchester.ac.uk/atlas/docs/Compiler%20Compiler%20source%20code.pdf
http://curation.cs.manchester.ac.uk/atlas/docs/Six%20CC%20test%20runs.pdf
http://curation.cs.manchester.ac.uk/atlas/docs/Original%20Compiler%20Compiler%20flowcharts.pdf
http://curation.cs.manchester.ac.uk/atlas/docs/Original%20Compiler%20Compiler%20flowcharts.pdf

10

APPENDIX 1
A list of all the items in Section 1 of the listings in the Red Binder in the order in which they appear.

 Octal addresses of the first word Item

20001010 to 20002050 index (Items 130 to 266)
20002260 to 20007634 Chain

20016360 ITEM 239 DOWN
20017100 ITEM 240 END sequence
20017220 ITEM 215 ANALYSIS ROUTINE
20022540 ITEM 266 ITEM ROUTINE
20026670 ITEM 252 split chain into 2 subchains
20027060 ITEM 130 [MP] = PHRASE, ITEM, END OF MESSAGE, FORMAT, FORMAT
 CLASS, DELETE ITEM, REPLACE ITEM
20027460 ITEM 261 Convert metasyntactical symbols
20030560 ITEM 238 LINE RECONSTRUCTION routine
20032460 ITEM 245 General unpacking routine
 ITEM 247 Line Image
20037260 ITEM 246 Standard Flexowriter Tab Settings
20040150 ITEM 222 DUAL routine
20041430 ITEM 160 [N] (as 149 but not in CID), used by 146
20041720 ITEM 150 Initial Entry Routine
20042020 ITEM 214 MASTER routine

E20000000 End of octal input. Enter at this address

11

APPENDIX 2
A list of all items in Section 2 of the listing in the Red Binder in the order in which they appear.

ITEM 145 DELETE ITEM routine
ITEM 131 [BS] dictionary
ITEM 132 [AS] dictionary
ITEM 133 [SS] dictionary
ITEM 129 Conventional list of 20 format classes
ITEM 169 List of dictionaries to be packed
ITEM 256 Double entry list of routine/compiling version serial numbers
ITEM 134 CID dictionary
ITEM 243 General Packing Routine for dictionaries
ITEM 228 Transfer dictionary to record store
ITEM 216 24-bit multiplication and division
ITEM 164 REPLACE ITEM routine
ITEM 155 Delete an item in the store
ITEM 175 Second entry to Delete item
ITEM 231 Transfer dictionary to chain store
REPLACE ITEM 130 [MP] =
ITEM 245 General unpacking routine
ITEM 219 Print B82 in Octal
ITEM 142 pre-editing routine
ITEM 258 Non-catastrophic fault routine
ITEM 248 Decimal printing routine
ITEM 257 CATASTROPHIC FAULT routine
REPLACE ITEM 215 ANALYSIS routine
REPLACE ITEM 261 Convert metasyntactical symbols
REPLACE ITEM 238 LINE RECONSTRUCTION routine
REPLACE ITEM 246 Standard flexowriter tab settings
ITEM 227 END OF MESSAGE routine
REPLACE ITEM 214 MASTER routine

END OF MESSAGE

REPLACE ITEM 161 Set Chain and Stack
REPLACE ITEM 227 END OF MESSAGE routine

END OF MESSAGE

REPLACE ITEM 142 Pre-editing routine

END OF MESSAGE

ITEM 218 PHRASE routine
ITEM 260 Entry to PHRASE routine used by auxiliary phrase routine
ITEM 242 Auxiliary Phrase routine
ITEM 220 FORMAT routine

12

ITEM 213 Read next section
ITEM 141 Look up or enter in double-entry list
ITEM 259 Add nil branch to dictonary
ITEM 204 Add word to list
ITEM 205 Add word to nest
ITEM 206 Withdraw word from nest
ITEM 207 Delete chain
ITEM 209 Add list to list
ITEM 210 Copy linear list to chain
ITEM 171 [general phrase identifier] = [[phrase identifier][phrase label][phrase index]]
ITEM 174 [phrase label] = / [N], NIL
ITEM 176 [phrase index] = ([ABN]), NIL
ITEM 151 [body of phrase definition] = [143][π] = [phrase*]
ITEM 156 [phrase*] = [phrase][phrase*], [phrase] EOS
ITEM 157 [phrase] = BUT NOT, [π or ES*] COMMA, NIL, [π or ES*]
ITEM 159 [serial number] = COMMA [N], COMMA [π or ES*], NIL
ITEM 163 [body of format defn.] = [π]=[π or ES*][serial number]EOS
ITEM 139 skeleton of A* and A?
 A* ≡ A* = A A* COMMA A EOS
 A? ≡ A? = A COMMA NIL EOS
ITEM 143 (CR), NIL
ITEM 265 double-entry list for serial no of routine / compiling version
ITEM 225 merge new entry into dictionary
ITEM 224 General dictionary routine
ITEM 230 [identifier] conversion routine
ITEM 172 [phrase identifier] built-in
ITEM 158 Built-in phrase for any sequence of identifiers or basic symbols
ITEM 152 Built-in phrase for phrase identifier
ITEM 160 [N] (not in CID)
ITEM 149 Built in phrase for [N]
ITEM 166 Built-in phrase for [α] and [A]
ITEM 167 Built-in phrase for [β] and [B]
ITEM 229 COMMA
ITEM 183 Print Symbol
ITEM 177 Print new format or phrase

END OF MESSAGE

ITEM 278 FIXED ITEM routine
ITEM 253 compile body of a routine
ITEM 221 ROUTINE routine
ITEM 217 Convert absolute pointers to relative pointers
ITEM 223 ‘Is it parameter-free?’ routine
ITEM 144 Phrase: [label] = [separator*?] EOS, [separator*?][primary label]
ITEM 185 [RESOLVED-P] = [set p][152][reset p] 1, [reset p] -1
ITEM 179 [SEP] = COMMA, EOL
ITEM 184 [LABEL]
ITEM 148 [separator*?] = COMMA, EOL
ITEM 181 [PI] denotes identifier / label?/index?
ITEM 250 reset p

13

ITEM 244 set p’
ITEM 251 [FD]
ITEM 173 [OW]

END OF MESSAGE

ITEM 187 [AB] = [WORD] [SEP]
ITEM 188 [AB] = [WORD][OPERATOR][WORD] [SEP]
ITEM 189 ([ADDR]) = [WORD] [SEP]
ITEM 190 ([ADDR]) = [WORD][OPERATOR][WORD] [SEP]
ITEM 191 [JUMP] [LABEL] [IU] [QI] [EQV] [RESOLVED-P] [SEP]
ITEM 192 [JUMP] [LABEL] [SEP]
ITEM 235 compute value of a word
ITEM 236 compute value of an address
ITEM 211 CALL R [PI] [SEP]
ITEM 197 [AB] = CATEGORY OF [PI] [SEP]
ITEM 198 [AB] = NUMBER OF [PI] [SEP]
ITEM 202 [AB] = ADDRESS OF [PI] [SEP]
ITEM 193 LET [PI] = [GENERATED-P] [SEP]
ITEM 194 [JUMP][LABEL][IU][PI][EQV][RESOLVED-P] [SEP]
ITEM 195 LET [PI][EQV][RESOLVED -P][SEP]
ITEM 196 [JUMP][LABEL][IU][PI] = [PI][SEP]
ITEM 234 look-up ([PI]) L.S.E. routine
ITEM 232 Transplant routine
ITEM 233 look-up
ITEM 170 interpret -> B82
ITEM 267 SHIFT [AB] UP [ABN] [SEP]
ITEM 268 SHIFT [AB] DOWN [ABN] [SEP]
ITEM 269 SPACE [SEP]
ITEM 270 NEWLINE [SEP]
ITEM 271 PRINT [ABN] [SEP]
ITEM 199 [FD][COMMA][WORD][COMMA][WORD][COMMA][WORD][SEP]
ITEM 200 PLANT [FD][COMMA][ABN][COMMA][ABN][COMMA][WORD]IN[B][SEP]
ITEM 203 [AB] = CLASS OF [PI] [SEP]
ITEM 201 [PI] = [AB] [SEP]
ITEM 208 CALL R [ABN] [SEP]
ITEM 212 [FD][COMMA][WORD][COMMA] 0 [COMMA]L[LABEL][SEP]
ITEM 262 END (i.e. the [BI] format)
ITEM 263 [AB] = INDEX [ABN] [SEP]
ITEM 264 INDEX [ABN] = [AB] [SEP]
ITEM 273 PRINT SYMBOL [ABN] [SEP]
ITEM 277 PRINT [ABN] IN OCTAL [SEP]

END OF MESSAGE

14

APPENDIX 3
A list of all items in Section 3 of the listing in the Red Binder in the order in which they appear.

PHRASE [146] = [160]), NIL
PHRASE [147] = [BS], [182][AS], [182][SS]
PHRASE (CR) [182] = *, NIL
PHRASE [AB] = [A], [B]
PHRASE [ABN] = [A], [B], [N]
PHRASE [249] = (COMPILER), NIL
PHRASE [254] = SMALL R [160], R[160], [249][181][EQV][185]
PHRASE [186] = [152]
PHRASE (CR) [JUMP] = ->, >, JUMP, [83]
PHRASE [OPERATOR] = +, -, X, /, &, V, #, AND, NOT EQV
PHRASE [COMPARATOR] = =, #, >, <, <, >,)
PHRASE [ADDR] = [AB] + [ABN], [AB]-[ABN], [AB] (+) [ABN], [AB]
PHRASE [WORD] = [ADDR],([ADDR]),[-?][N].[0-3],[-?].[0-3],[-?][N],[173]
PHRASE [-] = -
PHRASE [IU] = IF, UNLESS
PHRASE (CR) [EQV] = =, (=)
PHRASE [0-3] = 00, 01, 10, 11
PHRASE [,WORD] = [COMMA] [WORD]
PHRASE [LIST OR NEST] = LIST , NEST

FORMAT [BS] =[AB] = [WORD][SEP], 187
FORMAT [BS] =[AB] = [WORD][OPERATOR][WORD][SEP], 188
FORMAT [BS] =[AB] = ADDRESS OF [PI][SEP], 202
FORMAT [BS] =[AB] = CATEGORY OF [PI][SEP], 197
FORMAT [BS] =[AB] = CLASS OF [PI][SEP], 203
FORMAT [BS] =[AB] = NUMBER OF [PI][SEP], 198
FORMAT [BS] =[AB] = INDEX [ABN][SEP], 263
FORMAT [BS] =([ADDR]) = [WORD][SEP], 189
FORMAT [BS] =([ADDR]) = [WORD][OPERATOR][WORD][SEP], 190
FORMAT [BS] =LET [PI][EQV][RESOLVED -P][SEP], 195
FORMAT [BS] =LET [PI] = [GENERATED - P][SEP], 193
FORMAT [BS] =[JUMP][LABEL][SEP], 192
FORMAT [BS] =[JUMP][LABEL][IU][WORD][COMPARATOR][WORD][SEP], 191
FORMAT [BS] =[JUMP][LABEL][IU][PI][EQV][RESOLVED - P][SEP], 194
FORMAT [BS] =[JUMP][LABEL][IU][PI] = [PI][SEP], 196
FORMAT [BS] =PRINT [ABN] IN OCTAL [SEP] , 277
FORMAT [BS] =PRINT [ABN][SEP], 271
FORMAT [BS] =PRINT SYMBOL [ABN][SEP],273
FORMAT [BS] =PLANT [FD][COMMA][ABN][COMMA][ABN][COMMA][WORD]IN[B][SEP],200
FORMAT [BS] =[FD][COMMA][WORD][COMMA][WORD][COMMA][WORD][SEP], 199
FORMAT [BS] =[FD][COMMA][WORD][COMMA] 0 [COMMA]L[LABEL][SEP], 212
FORMAT [BS] =[PI]= [AB][SEP], 201
FORMAT [BS] =CALL R [ABN][SEP], 208
FORMAT [BS] =CALL R [PI][SEP], 211
FORMAT [BS] =END[SEP], 262
FORMAT [BS] =INDEX [ABN] = [AB][SEP], 264
FORMAT [BS] =SHIFT [AB] UP [ABN][SEP], 267
FORMAT [BS] =SHIFT [AB] DOWN [ABN][SEP], 268
FORMAT [BS] =SPACE [SEP], 269
FORMAT [BS] =NEWLINE [SEP], 270
FORMAT [BS] =[WORD]/[WORD][SEP]

15

FORMAT [MP] = END OF PRIMARY MATERIAL, 226
FORMAT [MP] = ROUTINE, 221
FORMAT [MP] = BUILT-IN PHRASE, 292
FORMAT [MP] = DEFINE COMPILER, 275
FORMAT [MP] = AMEND COMPILER, 276
FORMAT [MP] = FIXED ITEM , 278
FORMAT [MP] = SLIDE COMPILER UP A BLOCK , 281

FORMAT [AS] = [AB] = [LIST OR NEST][WORD][SEP]
FORMAT [AS] = [AB] = [LIST OR NEST]([WORD][, WORD*])[SEP]
FORMAT [AS] = [AB] = LIST [PI][SEP]
FORMAT [AS] = [AB] = LIST [AB]([ABN][COMMA]?)[SEP]
FORMAT [AS] = [AB] = VALUE OF LIST [AB] IN DICT [AB][SEP]
FORMAT [AS] = [AB] = CONVENTIONAL LIST OF [ABN] WORDS [SEP]
FORMAT [AS] = DELETE CONVENTIONAL LIST [AB][SEP]
FORMAT [AS] = DELETE [LIST OR NEST] [AB][SEP]
FORMAT [AS] = DELETE LIST [AB] FROM DICT [AB][SEP]
FORMAT [AS] = ADD ([WORD][, WORD*]) TO [LIST OR NEST][AB][SEP]
FORMAT [AS] = ADD [WORD] TO [LIST OR NEST][AB][SEP]
FORMAT [AS] = ADD LIST [AB][COMMA][WORD] TO DICT [AB][SEP]
FORMAT [AS] = ASSIGN VALUE [ABN] TO [PI][SEP]
FORMAT [AS] = ANALYSE LIST [AB] W.R.T. [PI][SEP]
FORMAT [AS] = WITHDRAW [AB] FROM NEST [AB][SEP]
FORMAT [AS] = LIST [AB] = LIST [AB] + LIST [AB][SEP]
FORMAT [AS] = LIST [AB] = ENTRY WITH VALUE [AB] IN DICT [AB][SEP]
FORMAT [AS] = LIST [AB] = NEXT LINE FROM INPUT [N][SEP]
FORMAT [AS] = LIST [AB] = NEXT RECONSTRUCTED LINE [SEP]
FORMAT [AS] = CONVERT [PI] TO [AB][SEP]
FORMAT [AS] = CALL [PI] COMPILER [GENERATED-P]
FORMAT [AS] = MONITOR ([ALL SYMBOLS EXCEPT RT BRACKET])[SEP]
FORMAT [AS] = PRINT LIST [ABN][SEP]

ROUTINE [AS] ≡ ADD [WORD] TO [LIST OR NEST][AB][SEP]
ROUTINE (COMPILER) [BS] ≡ [AB/1] = [WORD][SEP]
ROUTINE [AS] ≡ CALL[PI] COMPILER [GENERATED-P]
ROUTINE(COMPILER)[BS] ≡ ([ADDR]) = [WORD][SEP]
ROUTINE (COMPILER) [BS] ≡ PLANT
[FD][COMMA][ABN/1][COMMA][ABN/2][COMMA][WORD]IN[B][SEP]
ROUTINE (COMPILER)[BS] ≡ ->[LABEL][IU][WORD/1][COMPARATOR][WORD/2][SEP]

ROUTINE (COMPILER)[BS] ≡ [AB] = [WORD/1][OPERATOR][WORD/2][SEP]
ROUTINE (COMPILER)[AS] ≡ ADD [WORD] TO [LIST OR NEST][AB][SEP]
ROUTINE (COMPILER) [BS] ≡ [AB] = CATEGORY OF [PI] [SEP]
ROUTINE (COMPILER) [BS] ≡ [AB] = ADDRESS OF [PI] [SEP]
ROUTINE (COMPILER) [BS] ≡ LET [PI] ≡ [RESOLVED-P][SEP]
ROUTINE (COMPILER) [BS] ≡ -> [LABEL][IU][PI] ≡ [RESOLVED-P][SEP]
ROUTINE (COMPILER) [BS] ≡ ->[LABEL][SEP]
ROUTINE (COMPILER) [BS] ≡ SHIFT [AB] UP [ABN] [SEP]
ROUTINE (COMPILER) [BS] ≡ SHIFT [AB] DOWN [ABN] [SEP]
ROUTINE(COMPILER)[BS]≡[FD][COMMA][WORD/1][COMMA][WORD/2][COMMA][WORD/3][SEP]
ROUTINE (COMPILER) [BS] ≡ ([ADDR]) = [WORD/1][OPERATOR][WORD/2][SEP]
ROUTINE(COMPILER) [BS] ≡ END[SEP]
ROUTINE (COMPILER) [BS] ≡ [AB/1] = [WORD][SEP]
ROUTINE(COMPILER) [BS] ≡ ([ADDR]) = [WORD] [SEP]
ROUTINE (COMPILER) [BS] ≡
PLANT[FD][COMMA][ABN/1][COMMA][ABN/2][COMMA][WORD]IN[B][SEP]

16

ROUTINE (COMPILER)[BS] ≡ ->[LABEL][IU][WORD/1][COMPARATOR][WORD/2][SEP]
ROUTINE (COMPILER)[BS] ≡ [AB] = [WORD/1][OPERATOR][WORD/2][SEP]
ROUTINE (COMPILER)[AS] ≡ ADD [WORD] TO [LIST OR NEST][AB][SEP]
ROUTINE (COMPILER) [BS] ≡ [AB] = CATEGORY OF [PI] [SEP]
ROUTINE (COMPILER) [BS] ≡ [AB] = ADDRESS OF [PI] [SEP]
ROUTINE (COMPILER) [BS] ≡ LET [PI] ≡ [RESOLVED-P][SEP]
ROUTINE (COMPILER) [BS] ≡ -> [LABEL][IU][PI] ≡ [RESOLVED-P][SEP]
ROUTINE (COMPILER) [BS] ≡ SHIFT [AB] UP [ABN] [SEP]
ROUTINE (COMPILER) [BS] ≡ SHIFT [AB] DOWN [ABN] [SEP]
ROUTINE (COMPILER)[BS] ≡ ->[LABEL][SEP]
ROUTINE(COMPILER)[BS]≡[FD][COMMA][WORD/1][COMMA][WORD/2][COMMA][WORD/3][SEP]
ROUTINE (COMPILER) [BS] ≡ ([ADDR]) = [WORD/1][OPERATOR][WORD/2][SEP]
ROUTINE(COMPILER) [BS] ≡ END[SEP]
ROUTINE (COMPILER)[BS] ≡ PRINT SYMBOL[ABN][SEP]
ROUTINE (COMPILER) [BS] ≡ [AB] = NUMBER OF [PI][SEP]
ROUTINE(COMPILER) [BS] ≡ [AB] = CLASS OF [PI][SEP]
ROUTINE (COMPILER)[BS]≡INDEX [ABN] = [AB][SEP]
ROUTINE (COMPILER) [BS]≡[AB]= INDEX [ABN][SEP]
ROUTINE (COMPILER) [BS] ≡ SPACE [SEP]
ROUTINE (COMPILER)[BS] ≡ NEWLINE [SEP]
ROUTINE (COMPILER)[BS] ≡ CALL R [ABN] [SEP]
ROUTINE (COMPILER) [BS] ≡ PRINT [ABN][SEP]
ROUTINE (COMPILER)[BS]≡ [FD][COMMA][WORD][COMMA] 0 [COMMA] L [LABEL]
ROUTINE (COMPILER)[BS]≡[WORD/1]/[WORD/2][SEP]
ROUTINE (COMPILER) [BS] ≡ PRINT [ABN] IN OCTAL [SEP]
ROUTINE [MP] ≡ FORMAT CLASS
ROUTINE [MP] ≡ BUILT-IN PHRASE
BUILT-IN PHRASE [ALL SYMBOLS EXCEPT RT BRACKET]
ROUTINE R 180
FORMAT [SS] = POPI [WORD] TO [WORD][EOL]
ROUTINE [SS] ≡ POPI [WORD/1] TO [WORD/2][EOL]

END OF MESSAGE

PHRASE [NOTE'] = [COMMA]|[NOTE],NIL
PHRASE [TABLE LABEL] = [N]:[TABLE LABEL],NIL
FORMAT [AS] = PLANT [AB]TH ORDER OF TABLE [TABLE] IN [B][SEP]
FORMAT [AS] = PLANT TABLE [TABLE] IN [B][SEP]
FORMAT [AS] = |[NOTE][SEP]
BUILT-IN PHRASE [NOTE]
ROUTINE (COMPILER) [AS] ≡ |[NOTE][SEP]
PHRASE[TABLE] = [TABLE ENTRY][REST OF TABLE]
PHRASE [TABLE ENTRY] = [68][TABLE
LABEL][FD][COMMA][αβN][COMMA][αβN][COMMA][WORD][NOTE']
PHRASE[REST OF TABLE] = [TABLE ENTRY][REST OF TABLE],NIL
ROUTINE(COMPILER)[AS] ≡ PLANT[αβ]TH ORDER OF TABLE [TABLE]IN[β][SEP]
ROUTINE(COMPILER) [AS] ≡ PLANT TABLE [TABLE] IN [β][SEP]
ROUTINE [AS] ≡ [AB/1] = LIST [AB/2]([ABN/3],?)[SEP]
ROUTINE [AS] ≡ MONITOR ([ALL SYMBOLS EXCEPT RT BRACKET])[SEP]
ROUTINE [AS] ≡ LIST[AB] = NEXT RECONSTRUCTED LINE[SEP]
ROUTINE [AS] ≡ [AB] = [LIST OR NEST][WORD][SEP]
ROUTINE [AS] ≡ [AB] = [LIST OR NEST]([WORD/1][, WORD*])[SEP]
ROUTINE [AS] ≡ [AB/1] = VALUE OF LIST [AB/2] IN DICT [AB/3][SEP]
ROUTINE [AS] ≡ DELETE CONVENTIONAL LIST [AB][SEP]
ROUTINE [AS] ≡ DELETE LIST [AB/1] FROM DICT [AB/2][SEP]
ROUTINE [AS] ≡ WITHDRAW [AB/1] FROM NEST [AB/2][SEP]
ROUTINE [AS] ≡ LIST [AB/1] = LIST [AB/2] + LIST [AB/3][SEP]
ROUTINE [AS] ≡ LIST [AB/1] = ENTRY WITH VALUE [AB/2] IN DICT [AB/3][SEP]
ROUTINE [AS] ≡ ADD ([WORD][, WORD*]) TO [LIST OR NEST] [AB][SEP]
ROUTINE [AS] ≡ [AB] = CONVENTIONAL LIST OF [ABN] WORDS [SEP]

17

ROUTINE [AS] ≡ ASSIGN VALUE [ABN] TO [PI][SEP]
ROUTINE [AS] ≡ PRINT LIST [ABN] [SEP]
ROUTINE [AS] ≡ ANALYSE LIST [AB] W.R.T. [PI] [SEP]
ROUTINE [AS] ≡ ADD LIST [AB/1] [COMMA] [WORD] TO DICT [AB/2] [SEP]
ROUTINE [AS] ≡ DELETE [LIST OR NEST] [AB] [SEP]
ROUTINE (COMPILER)[AS] ≡ [AB/1] = LIST [AB/2]([ABN][COMMA]?)[SEP]
ROUTINE (COMPILER)[AS] ≡ DELETE [LIST OR NEST][AB][SEP]
ROUTINE (COMPILER)[AS] ≡ LIST [AB] = NEXT RECONSTRUCTED LINE [SEP]
ROUTINE (COMPILER) [AS] ≡ [AB] = [LIST OR NEST][WORD][SEP]
ROUTINE (COMPILER)[AS] ≡ ADD ([WORD][,WORD*]) TO [LIST OR NEST][AB][SEP]
ROUTINE (COMPILER) [AS] ≡ [AB] = [LIST OR NEST]([WORD][,WORD*])[SEP]
ROUTINE (COMPILER)[AS] ≡ WITHDRAW [AB/1] FROM NEST [AB/2][SEP]
ROUTINE (COMPILER)[AS] ≡ LIST [AB/1] = LIST [AB/2] + LIST [AB/3][SEP]
FORMAT [AS] = [αβ] = UPPER LIMIT OF [αβ] IN DICT [αβ][SEP]
ROUTINE [AS] ≡ [αβ/1] = UPPER LIMIT OF [αβ/2] IN DICT [αβ/3][SEP]
FORMAT [AS] = [αβ] = LIST FOR [αβ] IN CLASS [αβN][SEP]
ROUTINE [AS] ≡ [αβ] = LIST FOR [αβ/1] IN CLASS [αβN][SEP]
ROUTINE [AS] ≡ [αβ] = LIST [PI][SEP]
ROUTINE (COMPILER) [AS] ≡ MONITOR ([ALL SYMBOLS EXCEPT RT BRACKET]) [SEP]
ITEM 274
REPLACE ITEM 150
FORMAT [AS] = PRINT B-LINES [SEP]
ROUTINE (COMPILER) [AS] ≡ PRINT B-LINES [SEP]
ROUTINE SMALL R 283
DELETE ITEM 257
ROUTINE R 257
DELETE ITEM 258
ROUTINE R 258

END OF MESSAGE

ROUTINE [MP] ≡ DEFINE COMPILER
ROUTINE R 226
ROUTINE R 237
ROUTINE [AS] ≡ CONVERT [PI] TO [AB] [SEP]
FORMAT [AS] = CALL BUILT-IN PHRASE [PI][SEP]
FORMAT [AS] = PRESERVE ANALYSIS B-LINES [SEP]
FORMAT [AS] = RESTORE ANALYSIS B-LINES [SEP]
ROUTINE(COMPILER)[AS] ≡ CALL BUILT-IN PHRASE [PI][SEP]
ROUTINE(COMPILER)[AS] ≡ PRESERVE ANALYSIS B-LINES [SEP]
ROUTINE(COMPILER)[AS] ≡ RESTORE ANALYSIS B-LINES [SEP]
FIXED ITEM 0
FIXED ITEM 281
FIXED ITEM 135
FIXED ITEM 279
I280
REPLACE ITEM142

END OF MESSAGE

DEFINE COMPILER CC1

COMPILER COMPILER (CC1)

18

APPENDIX 4

The Compiler Compiler Index

COMPILER COMPILER
INDEX

 Key to Types tag in index

M. Miscellaneous item 00
R Large routine 00
r Small routine 01
P Phrase 10
PR Phrase routine (built-in) 11
O Index register is left clear - type
 is determined by the way it is used 00
S Special purpose (0-16 only) -
A Administrative or Interpretive Routine 01

Type Index
SP 0 0101, 127 0 |Compiler entry point (Item 0 has
SP 1 150 *2 |a special significance - see
 item 278)
SP 2 � origin of record score (B88)
SP 3 head of index chain (B87)
SP 4 origin of stack (B90) (set by R161 for use by R257)
SP 5 Current set of output (=0 I.S.; =64 O.S)
SP 6 � end of � xed part of store
SP 7 1102, 70,74
SP 8 Used by instructions involving B121, B122
SP 9
SP 10
SP 11
SP 12
SP 13 Address of start of chain store (reserved for)
SP 14 Length of chain store (used by R161. set by SET[N]BLOCKS)
SP 15 Tape address of compiler (c.f.1147 extracode)
SP 15 List program marker
 17 available to user
. . .
. . .
. . .
. . .
0 128 available to user

 Paper
TYPE Tape Index
M C 129 o Conventional list of 20 format classes including [AS], [SS]
 [BS], [MP]
P B,C 130 † [MP] = PHRASE, ITEM, END OF MESSAGE, FORMAT, FORMAT CLASS,
 DELETE ITEM, REPLACE ITEM
P C 131 o [BS] dictionary (M x dict) |In chain
P C 132 o [AS] dictionary (M x dict) |store during
P C 133 [SS] dictionary (M x dict) |input of primary
M C 134 o CID dictionary (no M word) material
R H 135 * Source material analysis routine
M - 136 Max. no. of lines allowed in [SS]
R B 137 Dummy Routine
M - 138 No. of faults detected by Master Routine
M D 139 o skeleton of A* and A?
 A* = A* = A A* COMMA A EOS

 A? = A? = A COMMA NIL EOS
M - 140 Max. no. of faults to be allowed by Mater Routine
r D 141 look up or enter in a double-entry list
R C 142 ‡ pre-editing routine
P D 143 o (CR),NIL
P E 144 o [label] = [separator*?] EOS , [separator*?][primary label]
R C 145 DELETE ITEM routine
O G 146 o [primary label] = [N]),NIL
O G 147 [instruction] = [BS] , [182][AS], [182][SS]
PR E 148 o [separator*?] = COMMA , EOL (record contracted ant)
PR D 149 [N] built in
R B,H 150 * Initial entry routine
P D 151 o [body of a phrase defn.] : [143][�] = [phrase*]
PR D 152 o [�] built in = any phrase identifier AR =&I
O G 153 [AB] or [� β]
O G 154 [ABN] or [� βN]
R C 155 † delete an item in the store
P D 156 o [phrase*] = [phrase][phrase*] , [phrase] EOS
P D 157 o [phrase] = BUT NOT , [� or ES*]
PR D 158 o [� or ES*] built in (Any sequence of identifiers or basic symbols)
 AR = & B I I I

Type Tape Index

P D 159 o [serial number] = COMMA [N], COMMA[� or ES*], NIL
PR D 160 * [N] (as 149 but not in CID), used by 146
R B,C 161 * Set Chain & Stack (subroutine of 150)
O - 162 User's Entry
P D 163 o [body of format defn.] = [pi] = [pi or ES*][serial number]_EOS_
R C 164 o REPLACE Item Routine
M - 165 Temporary index register used by 164, 237
PR D 166 [a] and [A] built-in : effectively � 1, � 2,,,,, � 4194303 or A1,A2,,,,,
PR D 167 [b] and [B] built-in : effectively β1,β2,,,,,β4194303 or B1,B2,,,,,
P - 168 spare
M C 169 o list of dictionaries and lists to be packed
A F 170 * interpret -> B82
P D 171 o [general phrase identifier] = [[phrase identifier][phrase label]
 [phrase index]]
PR D 172 o [phrase identifier] built-in AR = X BnIIII or X N
PR E 173 [OW]
P D 174 [Phrase label] = / [N], NIL
R C 175 � Second entry to 'delete item' (155) routine or list of routines
 to be deleted by END OF PRIMARY MATERIAL
P D 176 o [phrase index] = ([ABN]), NIL
r D 177 o print new format or phrase
O G 178 [0-3]
P E 179 [SEP] = COMMA, EOL
O G 180 ‡ diagnostic subroutine of Master Routine
PR E 181 o [PI] denotes identifier / label?/index?
O G 182 o (CR)[182] = *, NIL
r D 183 Print label
PR E 184 o [LABEL]
P E 185 o [RESOLVED-P] = [set p] [reset p] 1, [reset p] -1
O G 186 o [GENERATED-P] [186] = [152]

Type Tape Index

A F 187 ╪ [AB] = [WORD]
A F 188 ╪ [AB] = [WORD][OPERATOR][WORD]
A F 189 ╪ ([ADDR]) = [WORD]
A F 190 ╪ ([ADDR]) = [WORD][OPERATOR][WORD]
A F 191 [JUMP][LABEL][IU][WORD][COMPARATOR][WORD]
A F 192 [JUMP][LABEL]
A F 193 LET [PI] = [GENERATED-P]
A F 194 [JUMP][LABEL][IU][PI][EQV][RESOLVED-P]
A F 195 LET [PI][EQV][RESOLVED-P]
A F 196 [JUMP][LABEL][IU][PI] = [PI]
A F 197 [AB] = CATEGORY OF [PI]
A F 198 [AB] = NUMBER OF [PI]
A F 199 [FD][COMMA][WORD][COMMA][WORD][COMMA][WORD]
A F 200 PLANT [FD][COMMA][WORD][COMMA][WORD][COMMA][WORD]IN [AB]
A F 201 [PI] = [AB]
A F 202 [AB] = ADDRESS OF [PI]
A F 203 [AB] = CLASS OF [PI]
r D 204 add word to list
r D 205 add word to nest
r D 206 withdraw word from nest
r D 207 delete chain
A F 208 � CALL R [ABN]
r D 209 add list to list
r D 210 o copy linear list to chain
A F 211 CALL R [PI]
A F 212 [FD][COMMA][WORD]0[COMMA]L[LABEL]
R D 213 o Read next section
R B,C 214 ¥ Master routine
R B,C 215 � Analysis routine
M C 216 24-bit multiplication and division routine
r E 217 o Convert absolute &'s to relative &'s

Type Tape Index

R D 218 o PHRASE routine
r C 219 print B82 in Octal
R D 220 o FORMAT routine
R E 221 o ROUTINE routine
R B 222 o Dual routine
r E 223 o 'Is it parameter-free?' routine
R D 224 General Dict. Routine
R D 225 o Merge new entry into dictionary (first or last)
O H 226 † END OF PRIMARY MATERIAL routine
R C,C 227 END OF MESSAGE routine
r C 228 o Transfer dict. to record store
P D 229 o COMMA
R D 230 o [identifier] conversion routine
r C 231 o transfer dict. to chain store
A F,H 232 * Transplant routine (B74)
A F 233 look-up
r F 234 look-up ([PI]) L.S.E. routine
A F 235 Compute value of a word
A F 236 Compute value of an address
O H 237 � Body of end of primary material routine
R B,C 238 ¥ Line reconstruction routine
M B,H 239 * � DOWN sequence(B76)
M B 240 * � END sequence
R 241 List B61 = entry with value B63 in dict. B62
R D 242 o Auxiliary Phrase routine
R C 243 � General Packing Routine for dicts. etc.
PR E 244 o Set p'
R C 245 � General unpacking routine
M B,C 246 +++ Standard flexwriter tab-settings
M B 247 +++ Line image for R238

Type Tape Index

r c 248 Decimal printing routine
C G 249 o [compile phrase] = (COMPILER), NIL
PR E 250 o reset p
PR E 251 [FD]
r B 252 * Split chain into 2 sub-chains
R E 253 o Compile body of a routine
O G 254 o [routine heading] = SMALL R [N], R [N],[compile phrase]

[PI][EQV][GENERATED-P]
PR 255 Spare for phrase routine
M C 256 o Double entry list for serial no of routine / serial no of

corresponding compiled version
R C,H 257 * Catastrophic Fault Routine
R C,H 258 * Non-catastrophic fault routine
r D 259 o add nil branch to dictionary
R D 260 o Entry to phrase routine used by auxiliary phrase routine
R B,C 261 ¥‡ Convert metasyntactical symbols
A F 262 END (i.e. the [BI] format)
A F 263 [AB] = INDEX [ABN]
A F 264 INDEX [ABN] = [AB]
r D 265 o delete superfluous EOL's
R B 266 o Item routine
A F 267 SHIFT [AB] UP [ABN]
A F 268 SHIFT [AB] DOWN [ABN]
A F 269 SPACE
A F 270 NEWLINE
A F 271 PRINT [ABN]
O G 272 o FORMAT CLASS routine
A F 273 PRINT SYMBOL [ABN]
O H 274 * Sequence used by monitor
O H 275 DEFINE COMPILER
O - 276 +-+ Body of Define Compiler, Define Master Compiler, Define

Special Compiler
A F 277 PRINT [ABN] IN OCTAL
R E 278 o FIXED ITEM routine
O H 279 * � Fixed 'DOWN' sequence (B76)
O H 280 * � Fixed 'TRANSPLANT' sequence (B74)

Type Tape Index

O H 281 * SLIDE COMPILER UP A BLOCK (FIXED ITEM)
M 282 * Compiler title record (set in DEFINE COMPILER: printed in R150)

283 PRINT B-LINES (as preserved on stack)
284
285
286
287
288
289
290
291

O G 292 BUILT-IN PHRASE routine
293
294
295

R 296 * Error routine[call for a deleted routine]
r 297 +++ Print character (subroutine of R238)
O 298 * TRACE for END (Fixed itemO
O 299 TRACE for DOWN

Type Index

P 300 o [EQV]
P 301 [JUMP]
P 302 o [OPERATOR]
P 303 o [COMPARATOR]
P 304 [ADDR]
P 305 [WORD]
P 306 [-?]
P 307 [-]
P 308 o [IU]
P 309 o [,WORD]
P 310 o [LIST OR NEST]
O 311 [WORD]/[WORD] (only compiling version exists)
R 312 [AB]=[LIST OR NEST][WORD]
P 313 o [,WORD*]
R 314 [AB]=[LIST OR NEST][WORD]
R 315 [AB]=LIST[PI]
R 316 [AB]=LIST[AB]([ABN*?])
R 317 [AB]=VALUE OF LIST[AB]IN DICT[AB]
R 318 [AB]=CONVENTIONAL LIST OF [ABN] WORDS
R 319 DELETE CONVENTIONAL LIST [AB]
R 320 DELETE [LIST OR NEST][AB]
R 321 DELETE LIST[AB]FROM DICT[AB]
R 322 ADD([WORD][,WORD*])TO[LIST OR NEST][AB]
R 323 ADD[WORD]TO[LIST OR NEST][AB]
R 324 ADD LIST [AB],[WORD] TO DICT[AB]
R 325 ASSIGN VALUE[ABN]TO[PI]
R 326 ANALYSE LIST[AB] W.R.T.[PI]
R 327 WITHDRAW[AB]FROM NEST[AB]
R 328 LIST[ABLIST[AB]+LIST[AB]

329 LIST[AB]=ENTRY WITH VALUE[AB]IN DICT[AB]
330 LIST[AB]=NEXT LINE FROM INPUT[N]

R 331 LIST[AB]=NEXT RECONSTRUCTED LINE

Type Index

R 332 CONVERT[PI]TO[AB]
R 333 CALL[PI]COMPILER[GENERATED-P]
R 334 o [ALL SYMBOLS EXCEPT RT BRACKET]
R 335 MONITOR ([ALL SYMBOLS EXCEPT RT BRACKET])
R 336 PRINT LIST[ABN]
CV 337
CV 338
CV 339
R 340 DEFINE MASTER COMPILER
CV 341
CV 342
CV 343
CV 344
CV 345
CV 346
CV 347
CV 348
CV 349
CV 350
CV 351
CV 352
CV 353
CV 354
CV 355
CV 356
CV 357
CV 358
CV 359
CV 360
CV 361
CV 362
CV 363

Type Index

CV 364
R 365 o POPI[WORD]TO[WORD]
P 366 o [NOTE']
P 367 o [NOTE]
P 368 o [TABLE LABEL]
R 369 [TABLE]
R 370 PLANT[AB]TH ORDER OF TABLE[TABLE]IN[B]
R 371 PLANT TABLE[TABLE]IN[B]
R 372 |[NOTE] (only compiling version exists)
CV 373
P 374 [TABLE ENTRY]
P 375 [REST OF TABLE]
CV 376
CV 377
CV 378
CV 379
CV 380
CV 381
CV 382
CV 383
CV 384
CV 385
R 386 [AB]=UPPER LIMIT OF[AB]IN DICT[AB]
R 387 [AB]=LIST FOR [AB]IN CLASS[ABN]
CV 388
R 389 PRINT B-LINES (only compiling version exists)
CV 390
R 391 CALL BUILT-IN PHRASE[PI] (only C.V.exists)
R 392 PRESERVE ANALYSIS B-LINES (only C.V.exists)
R 393 RESTORE ANALYSIS B-LINES (only C.V.exists)
CV 394
CV 395

Type Index

CV 396
CV 397
R 398 † DEFINE SPECIAL COMPILER
R 399 LIST PROGRAM
R 400 DO NOT LIST PROGRAM
R 401 NOTES:
P 402 [LNOTE']
PR 403 [LNOTE]
R 404 SET[N]BLOCKS
R 405 FRIG
CV 406
P 407 FORMAT CLASS [DEBUG]
P 408 [DEBUG OPTS]
R 409 FORMAT [AS]=[DEBUG]
R 410 PRINT ITEM[WORD]
R 411 RPRINT[WORD]
R 412 [AB]=END OF ITEM[WORD]
R 413 SWITCH TRACE ON
R 414 SWITCH TRACE OFF
R 415 POPO[WORD]TO[WORD]
CV 416

417
418
419
420
421
422
423
424
425
426

Note that the Type CV indicates a Compiling Version. Such routines are given
a new serial number each time they are redefined and the old number is returned
to the list of available indexes. The correspondence between a CV and its
associated Format number is given by Item 256.

FOOTNOTE KEY

* Must not be deleted
† Can be deleted only by calling R155 from R276
‡ Can be deleted only by rewriting the master routine R214
‡ These four routine are really the same routine. One may not be

deleted unless all 4 are deleted and then only by deleteing one of
them and then clearing the indices of the other 3.

¥ Can be rewritten to provide shorter versions in a finalised compiler
+-+ It is possible to write a self deleting verion of R276
+++ Can be deleted by rewriting R238
o Deleted by the standard END OF PRIMARY MATERIAL
� Receives special attention in END OF PRIMARY MATERIAL

	ATLAS COMPILER COMPILER LISTING (1963)
	APPENDIX 1
	APPENDIX 2
	APPENDIX 3
	APPENDIX 4
	The Compiler Compiler Index

